Welches Federstahlblech und Oberflächenbehandlung, mit ihren spezifischen Eigenschaften, eignet sich für welche federtechnische Anwendung. Und mit welcher Oberflächenbehandlungen oder -beschichtung erhält man welche zusätzlichen Eigenschaften in Form von Korrosionsschutz, elektrischer Leitfähigkeit, medizinischer Reinheit, Gleitfähigkeit … für die benötigte Formfeder, Flachfeder,
Wichtig beim Umformen von Federstahlblech
Beim Umformen von Formfedern, Flachformfedern, Federklammern, Kontaktfedern und Blattfedern ist unter anderem die Walzrichtung des Federstahlblechs und Federbandstahl ein wichtiger Faktor. Denn durch die Streckung des Materials beim Walzen entsteht ein faserartiges Werkstoffgefüge, dessen Faserdehnung sich immer in Walzrichtung einstellt.
Federstahlbleche nach Anwendung in der Übersicht
Federstahlbleche sind, je nach Legierung, für verschiedene Anwendungen geeignet. Welches Federstahlblech und Federstahlband grundsätzlich für die Anwendung – antihaftend, gleitgünstig, hitzebeständig, kältebeständig, korrosionsbeständig, elektrisch leitend, isolierend, lebensmittelecht, medizintechnisch, optisch, metallisch rein, lötbar, unmagnetisch, salzwasserbeständig, säurebeständig, regenerierend – ungeignet, gering oder
Zugfestigkeit Edelstahl
Edelstahl ist ein häufig eingesetzter Werkstoff mit vielen guten Eigenschaften. Er ist korrosionsbeständig und langlebig, kann in einem breiten Temperaturbereich eingesetzt werden und ist leicht zu reinigen sowie chemisch und mikrobiologisch beständig. Somit lässt sich Edelstahl nicht nur gut im
Oberflächenbehandlung Metall Eigenschaften
Die Primärfunktion eines Metallbauteils und einer Metallfeder kann durch die Oberflächenbehandlung um weitere Eigenschaften und Funktionen ergänzt werden. Dabei beschränkt man sich beispielsweise bei der Auswahl des Federstahlblechs zur Herstellung von Formfedern, Flachfedern, Blattfedern, Federklammern, Stanzbiegeteilen, Kontaktfedern oder Laserteile auf
Flachformfeder auslegen
Flachformfedern kommen unter anderem im Maschinen- und Fahrzeugbau oder der Elektrotechnik zum Einsatz. Um eine Flachformfeder zu berechnen und zu entwerfen, müssen unterschiedliche Eigenschaften definiert werden. Ein allgemeingültiges Berechnungsverfahren gibt es dabei nicht. Wichtige Parameter für die Auslegung und
Spannungs-Dehnungs-Diagramm Federstahl
Mit dem Spannungs-Dehnungs-Diagramm kann die statische Belastbarkeit von Federstahl festgelegt werden. Das Spannungs-Dehnungs-Diagramm zeigt während des Zugversuchs das Dehnverhalten des Federstahls bis zum Bruch. Für den Konstrukteur ist das Spannungs-Dehnungs-Diagramm eine wichtige Konstruktionsvorgabe, da er an diesem Diagramm ablesen kann
Spiralfedern berechnen
Spiralfedern werden aus Federbandstahl hergestellt. Spiralfedern werden in einer Ebene der archimedischen Spirale nach gewunden. Der konstante Windungsabstand (a) verhindert dabei eine Berührung der einzelnen Windungen und stellt eine reibungsarme Funktion der Feder sicher. Spiralfedern werden so im Bauteil eingesetzt,
Flächenträgheitsmoment berechnen
Bei der Konstruktion von Flachfedern, Formfedern und Flachformfedern wird neben der Biegespannung auch häufig das Flächenträgheitsmoment berechnet. Das Flächenträgheitsmoment ist eine geometrische Größe, die in der Festigkeitslehre verwendet wird. Sie wird zur Verformungs- und Spannungsberechnung bei Biege- und Torsionsbeanspruchung von
Biegespannung berechnen
Die Biegespannung, die bei der Biegung einer Flachfeder, Blattfeder oder Flachformfeder auftritt, lässt sich am Beispiel der einseitig eingespannten Flachfeder verdeutlichen: Die Flachfeder mit der ursprünglichen Länge „l“ wird bei der Verbiegung durch die Kraft „F“ auf der Oberseite verlängert