Flach- und Formfeder von Gutekunst FormfedernTo do mechanical work, will mechanical energy needed. This can be found everywhere in our everyday life: an internal combustion engine converts the chemical energy in the fuel into mechanical kinetic energy through combustion, an electric motor generates mechanical energy from electrical energy and a Metal spring stores mechanical energy in the form of Tension energy when it is charged. The tension energy arises due to the elastic deformation of the metal springs . It is a form of potential energy and indicates how much mechanical work occurs when the metal spring is loaded or tensioned. Mechanics deals with different movements of bodies. In addition to tension energy, other types of mechanical energy can be discovered:

  • Every body has one due to its mass in the earth’s gravitational field potential energy (Position or altitude energy). For example, it causes free fall.
  • When a body moves over a surface, the frictional resistance generates heat, and thus heat Frictional energy .
  • The faster a body is moved, the higher it is kinetic energy , also Kinetic energy called.


Conversion of mechanical energy in metal springs

In a burdened Metal spring is mechanical energy in the form of tension energy. This tension energy is released when the load is released. For example, if a ball is in front of the metal spring, it sets it in motion. The tension energy of the metal spring can be used to accelerate other bodies. After this Energy Conservation Act the energy is not lost in the process, it is only converted. As soon as the acceleration work has been done, the ball has kinetic energy. This conversion of mechanical forms of energy is the basis of all processes in mechanics.


Calculation of the tension energy of a metal spring

Flat shape spring calculationThe tension energy is stored in a metal spring when tensioned. It depends on the loaded spring travel s (mm) of the metal spring and the spring constant R. (N / mm).

E_<wpml_curved wpml_value='Spann'></wpml_curved>=\frac<wpml_curved wpml_value='1'></wpml_curved><wpml_curved wpml_value='2'></wpml_curved>\cdot R\cdot s^<wpml_curved wpml_value='2'></wpml_curved>

To the spring constant R. (N / mm) for Flat and shaped springs in a load test (for the acting force F. is the spring deflection s measured), the following formula applies:

R= \frac<wpml_curved wpml_value='F2-F1'></wpml_curved>{<wpml_curved wpml_value='s2-s1'></wpml_curved>}

F1 = Spring force preloaded
s1 = Spring deflection preloaded
F2 = Spring force loaded
s2 = Loaded spring deflection


See more information about the Calculation of shaped springs , Flat springs , Contact springs and Leaf springs . The technical experts at Gutekunst Formfedern support you in designing the right metal spring. Simply send “ Spring request ” or via email info@gutekunst-formfedern.de the data of your desired metal spring with details of the number of pieces and the drawing or the CAD data. We will prepare a non-binding offer for you at short notice.




For more information:

Mechanical energy in metal springs